Lipschitz–Volume rigidity in Alexandrov geometry
نویسندگان
چکیده
منابع مشابه
Extrinsic Curvature of Semiconvex Subspaces in Alexandrov Geometry
In Alexandrov spaces of curvature bounded either above (CBA) or below (CBB), we obtain extrinsic curvature bounds on subspaces associated with semiconcave functions. For CBA spaces, we obtain new intrinsic curvature bounds on subspaces. For CBB spaces whose boundary is extrinsically curved, we strengthen Perelman’s concavity theorem for distance from the boundary, deriving corollaries on sharp ...
متن کاملRigidity Theorems in Riemannian geometry
The purpose of this chapter is to survey some recent results and state open questions concerning the rigidity of Riemannian manifolds. The starting point will be the boundary rigidity and conjugacy rigidity problems. These problems are connected to many other problems (Mostow-Margulis type rigidity, isopectral problems, isoperimetric inequalities etc.). We will restrict our attention to those r...
متن کاملA Convergence Theorem in the Geometry of Alexandrov Spaces
The fibration theorems in Riemannian geometry play an important role in the theory of convergence of Riemannian manifolds. In the present paper, we extend them to the Lipschitz submersion theorem for Alexandrov spaces, and discuss some applications. Résumé. Les théorèmes de fibration de la géométrie riemannienne jouent un rôle important dans la théorie de la convergence des variétés riemannienn...
متن کاملGroups, geometry, and rigidity
This mini-course is an introduction to some central themes in geometric group theory and their modern offshoots. One of the earliest and most influential results in the area (in fact a precursor to the field of geometric group theory) is Mostow’s celebrated strong rigidity theorem. This course begins with an “annotated” proof of Mostow’s theorem, using the framework of the proof as a means to i...
متن کاملThe Geometry of Matrix Rigidity
Consider the following problem: Given an n×n matrix A and an input x, compute Ax. This problem has a simple algorithm which runs in time O(n). The question thus is: Is this is the best possible ? Valiant showed ([12]) that if an n × n matrix A is rigid, then the smallest straight line program computing Ax is either super-linear size, or has super logarithmic depth. Roughly a matrix of rank n is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2015
ISSN: 0001-8708
DOI: 10.1016/j.aim.2015.02.002